

(3) How can I compare slopes and y-intercepts easily? Solve for y to get the equation in y-form. (a) 3x - 2y = 14 (b) 3y - x + 4 = 4x - 11 (4) In section 7 "Regents Problems," complete 2 through 20 even problems only. The odd problems are homework.

(5) So, what if they give me a point and an equation or 2 points? If any 3 variables are given, you can find the fourth.

Example 1: A line parallel to $y = \frac{2}{3}x + 7$ that passes through (6, -1)

(a) I know that for this line, m = _____ and there is a point on the line such that x = _____ and y = _____.

(b) I need to find the value of _____ to write the equation for the parallel line in "y = mx + b" form.

(c) I will plug in what I know ____ = ___ (____) + ____ and solve for what I need, which is ____.

(d) The equation for the parallel line that pases through (6,-1) is _____

Example 2: A line perpendicular to y = -4x + 1 that passes through (-8, 3)

- (a) I know that for this line, m = _____ and there is a point on the line such that x = _____ and y = _____.
- (b) I need to find the value of _____ to write the equation for the parallel line in "y = mx + b" form.

(c) I will plug in what I know ____ = ___ (____) + ____ and solve for what I need, which is ____.

(d) The equation for the perpendicular line that pases through (6,-1) is ______

Example 3: The perpendicular bisector of the line segment with endpoints A(5,11) and B(-1,13)

- (a) I know that this line must pass through the midpoint of AB which has values: x = _____ and y = _____.
- (b) I know that the slope of segment AB is _____ so the slope of the perpendicular bisector is _____
- (c) I need to find the value of _____ to write the equation for the parallel line in "y = mx + b" form.

(c) I will plug in what I know ____ = ___ (____) + ____ and solve for what I need, which is ____.

(d) The equation for the the perpendicular bisector of the line segment with endpoints

(6) In section 7 "Regents Problems," complete 22 through 38 even problems only. The odd problems are homework.

LINEAR EQUATIONS

G.G.62: PARALLEL AND PERPENDICULAR **LINES**

- 1 What is the slope of a line perpendicular to the line whose equation is 5x + 3y = 8?
 - $\frac{5}{3}$ 1 $\frac{3}{5}$ 2 $-\frac{3}{5}$ 3 $-\frac{5}{3}$ 4
- 2 What is the slope of a line perpendicular to the line whose equation is $y = -\frac{2}{3}x - 5$?
 - $-\frac{3}{2}$ 1 $-\frac{2}{3}$ 2 $\frac{2}{3}$ 3 $\frac{3}{2}$ 4
- What is the slope of a line that is perpendicular to 3 the line whose equation is 3x + 4y = 12?
 - $\frac{3}{4}$ 1 $-\frac{3}{4}$ 2 $\frac{4}{3}$ 3
 - $-\frac{4}{3}$ 4

- 4 What is the slope of a line perpendicular to the line whose equation is y = 3x + 4?
 - $\frac{1}{3}$ 1 $-\frac{1}{3}$ 2 3 3 4 -3
- What is the slope of a line perpendicular to the line 5 whose equation is 2y = -6x + 8?
 - 1 -3 2
 - $\frac{1}{6}$
 - $\frac{1}{3}$ 3
 - 4 -6
- 6 What is the slope of a line that is perpendicular to the line whose equation is 3x + 5y = 4?
 - $-\frac{3}{5}$ 1 $\frac{3}{5}$ 2 $3 -\frac{5}{3}$ $4 \frac{5}{3}$
- 7 What is the slope of a line that is perpendicular to the line represented by the equation x + 2y = 3?
 - 1 -22
 - 2
 - $3 -\frac{1}{2}$
 - $\frac{1}{2}$ 4

- 8 What is the slope of a line perpendicular to the line whose equation is 20x - 2y = 6?
 - 1 -10
 - $-\frac{1}{10}$ 2
 - 3 10

 - $\frac{1}{10}$ 4
- 9 The slope of line l is $-\frac{1}{3}$. What is an equation of a line that is perpendicular to line ℓ ?
 - $y + 2 = \frac{1}{3}x$ 1
 - 2 -2x + 6 = 6v
 - $3 \quad 9x 3y = 27$
 - $4 \quad 3x + y = 0$
- 10 Find the slope of a line perpendicular to the line whose equation is 2v - 6x = 4.

G.G.63: PARALLEL AND PERPENDICULAR LINES

- 11 The lines 3y + 1 = 6x + 4 and 2y + 1 = x 9 are
 - 1 parallel
 - 2 perpendicular
 - 3 the same line
 - neither parallel nor perpendicular 4
- 12 Which equation represents a line perpendicular to the line whose equation is 2x + 3y = 12?
 - 1 6y = -4x + 12
 - $2 \quad 2y = 3x + 6$
 - $3 \quad 2y = -3x + 6$
 - 4 3y = -2x + 12

- 13 What is the equation of a line that is parallel to the line whose equation is y = x + 2?
 - 1 x + y = 5
 - 2 2x + y = -2
 - $3 \quad y x = -1$
 - $4 \quad v 2x = 3$
- 14 Which equation represents a line parallel to the line whose equation is 2y - 5x = 10?
 - 5y 2x = 251
 - 2 5y + 2x = 10
 - 4y 10x = 123
 - 2y + 10x = 84
- 15 Two lines are represented by the equations

 $-\frac{1}{2}y = 6x + 10$ and y = mx. For which value of m will the lines be parallel?

- 1 -122 -33 3
- 4 12
- 16 The lines represented by the equations $y + \frac{1}{2}x = 4$
 - and 3x + 6y = 12 are
 - 1 the same line
 - 2 parallel
 - 3 perpendicular
 - neither parallel nor perpendicular 4
- The two lines represented by the equations below 17 are graphed on a coordinate plane.

x + 6y = 12

3(x-2) = -y - 4

Which statement best describes the two lines?

- The lines are parallel. 1
- 2 The lines are the same line.
- 3 The lines are perpendicular.
- 4 The lines intersect at an angle other than 90°.

- 18 The equation of line k is $y = \frac{1}{3}x 2$. The equation
 - of line *m* is -2x + 6y = 18. Lines *k* and *m* are
 - 1 parallel
 - 2 perpendicular
 - 3 the same line
 - 4 neither parallel nor perpendicular
- 19 Determine whether the two lines represented by the equations y = 2x + 3 and 2y + x = 6 are parallel, perpendicular, or neither. Justify your response.
- 20 Two lines are represented by the equations x + 2y = 4 and 4y 2x = 12. Determine whether these lines are parallel, perpendicular, or neither. Justify your answer.

G.G.64: PARALLEL AND PERPENDICULAR LINES

- 21 What is an equation of the line that passes through the point (-2, 5) and is perpendicular to the line
 - whose equation is $y = \frac{1}{2}x + 5$?
 - $\begin{array}{ll}
 1 & y = 2x + 1 \\
 2 & y = -2x + 1
 \end{array}$
 - y = -2x + 13 y = 2x + 9
 - 4 v = -2x 9
- 22 What is an equation of the line that contains the point (3,-1) and is perpendicular to the line whose equation is y = -3x + 2?
 - $1 \quad y = -3x + 8$
 - $2 \qquad y = -3x$
 - $3 y = \frac{1}{3}x$ $4 y = \frac{1}{2}x 2$

23 What is an equation of the line that is perpendicular to the line whose equation is $y = \frac{3}{5}x - 2$ and that passes through the point (3, -6)?

1
$$y = \frac{5}{3}x - 11$$

2 $y = -\frac{5}{3}x + 11$
3 $y = -\frac{5}{3}x - 1$
4 $y = \frac{5}{3}x + 1$

- 24 What is the equation of the line that passes through the point (-9, 6) and is perpendicular to the line v = 3x - 5?
 - y = 3x 3y $1 \quad y = 3x + 21$
 - 2 $y = -\frac{1}{3}x 3$
 - $3 \quad v = 3x + 33$
 - 4 $y = -\frac{1}{3}x + 3$
- 25 Which equation represents the line that is perpendicular to 2y = x + 2 and passes through the point (4, 3)?
 - $1 y = \frac{1}{2}x 5$ $2 y = \frac{1}{2}x + 1$ 3 y = -2x + 11
 - $4 \qquad y = -2x 5$
- 26 Find an equation of the line passing through the point (6, 5) and perpendicular to the line whose equation is 2y + 3x = 6.

G.G.65: PARALLEL AND PERPENDICULAR LINES

- 27 What is the equation of a line that passes through the point (-3, -11) and is parallel to the line whose equation is 2x - y = 4?
 - $1 \qquad y = 2x + 5$
 - 2 y = 2x 53 $y = \frac{1}{2}x + \frac{25}{2}$ 4 $y = -\frac{1}{2}x - \frac{25}{2}$
- 28 What is an equation of the line that passes through the point (7, 3) and is parallel to the line 4x + 2y = 10?
 - 1 $y = \frac{1}{2}x \frac{1}{2}$ 2 $y = -\frac{1}{2}x + \frac{13}{2}$ 3 y = 2x - 114 y = -2x + 17
- 29 What is an equation of the line that passes through the point (-2, 3) and is parallel to the line whose
 - equation is $y = \frac{3}{2}x 4$? 1 $y = \frac{-2}{3}x$ 2 $y = \frac{-2}{3}x + \frac{5}{3}$ 3 $y = \frac{3}{2}x$ 4 $y = \frac{3}{2}x + 6$
- 30 Which line is parallel to the line whose equation is 4x + 3y = 7 and also passes through the point (-5, 2)?
 - $1 \quad 4x + 3y = -26$
 - $2 \qquad 4x + 3y = -14$
 - $3 \qquad 3x + 4y = -7$
 - $4 \quad 3x + 4y = 14$

- 31 Which equation represents the line parallel to the line whose equation is 4x + 2y = 14 and passing through the point (2, 2)?
 - 1 y = -2x 2 y = -2x + 6 $3 y = \frac{1}{2}x$ $4 y = \frac{1}{2}x + 1$
- 32 What is the equation of a line passing through (2,-1) and parallel to the line represented by the equation y = 2x + 1?

$$1 y = -\frac{1}{2}x$$

$$2 y = -\frac{1}{2}x + 1$$

$$3 y = 2x - 5$$

$$4 y = 2x - 1$$

33 An equation of the line that passes through (2,-1)and is parallel to the line 2y + 3x = 8 is

1
$$y = \frac{3}{2}x - 4$$

2 $y = \frac{3}{2}x + 4$
3 $y = -\frac{3}{2}x - 2$
4 $y = -\frac{3}{2}x + 2$

34 Which equation represents a line that is parallel to the line whose equation is $y = \frac{3}{2}x - 3$ and passes through the point (1,2)?

1
$$y = \frac{3}{2}x + \frac{1}{2}$$

2 $y = \frac{2}{3}x + \frac{4}{3}$
3 $y = \frac{3}{2}x - 2$
4 $y = -\frac{2}{3}x + \frac{8}{3}$

- 35 Find an equation of the line passing through the point (5, 4) and parallel to the line whose equation is 2x + y = 3.
- 36 Write an equation of the line that passes through the point (6, -5) and is parallel to the line whose equation is 2x - 3y = 11.

G.G.68: PERPENDICULAR BISECTOR

- 37 The coordinates of the endpoints of *AB* are A(0,0)and B(0,6). The equation of the perpendicular bisector of \overline{AB} is
 - $1 \quad x = 0$
 - 2 x = 3
 - 3 y = 0
 - 4 y = 3
- 38 Which equation represents the perpendicular bisector of \overline{AB} whose endpoints are A(8, 2) and B(0, 6)?
 - $1 \qquad y = 2x 4$
 - $2 \qquad y = -\frac{1}{2}x + 2$
 - $3 \qquad y = -\frac{1}{2}x + 6$
 - $4 \quad y = 2x 12$

Write an equation of the perpendicular bisector of the line segment whose endpoints are (-1, 1) and (7, -5). [The use of the grid below is optional]

